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Abstract

Our actions shape what we learn. Because of this dependency,
learners are proficient at choosing their actions to maximize
their information gain. However, learning often unfolds in
social contexts where learners have both informational goals
(e.g., to learn how something works) but also social goals (e.g.,
to appear competent and impress others). How do these goals
shape learners’ decisions? Here, we present a computational
model that integrates the value of social and informational
goals to predict the decisions that people will make in a simple
active causal learning task. We show that, in a context where
the informational and social goals are in conflict, an empha-
sis on performance or self-presentation goals leads to reduced
chances of learning (Exp. 1) and that social context can push
learners to pursue performance-oriented actions even when the
learning goal is highlighted (Exp. 2). Our formal model of
social-active learning successfully captures the empirical re-
sults. These findings are first steps towards understanding the
role of social reasoning in active learning contexts.
Keywords: active learning; social reasoning; information
gain; OED; self-presentation; goal tradeoffs

Introduction
Imagine you are a novice cook and have to decide what meal
to prepare for a first date. Should you choose an easy fa-
vorite or attempt a new dish? The familiar recipe can ensure
a good meal, but the new recipe could be even more deli-
cious, although it has a higher chance of failure. In this type
of explore-exploit dilemma (Sutton & Barto, 1998), you can
either explore the new recipe that might result in a more de-
licious dish (learning goal), or exploit your previous expe-
rience and knowledge to ensure a good meal (performance
goal). Here, we explore the idea that social factors shape the
goals we consider by formalizing the learning-performance
goal tradeoff using a simple active learning context.

Active learners have control over the sequence of informa-
tion during learning (e.g., press buttons on a toy, one by one,
to see their effect). One key assumption of active learning
is that people maximize the utility of their actions by gath-
ering information that is especially helpful for their learning.
Empirical work in education (Grabinger & Dunlap, 1995) and
cognitive psychology (Castro et al., 2009) suggests that active
contexts lead to faster learning than passive contexts where
people do not have control over the flow of information.

Real-world learning, however, usually takes place in rich
social contexts with teachers, peers, or others who can di-
rectly influence our learning. Indeed, adults and children
modulate their inferences depending on how others (e.g.,
teachers) select their actions (Shafto, Goodman, & Frank,
2012), and understand that socially communicated informa-
tion licenses different inferences than information generated
on their own (e.g., Xu & Tenenbaum, 2007). But even when

we learn from our own actions, our social environment may
affect our self-directed learning process. While previous
models have captured how we optimize learning, either from
our own actions or from others, they have been agnostic to
other social factors that are ubiquitous in a learner’s environ-
ment. People must integrate the value of social goals and
informational goals when deciding what to do.

How can active learning models accommodate this richer
set of utilities? As a step towards answering this question,
we model a learner who considers a mixture of learning
and performance goals. A key assumption underlying re-
cent Bayesian models of human social cognition is that peo-
ple expect others to act approximately optimally given a util-
ity function (e.g., Goodman & Frank, 2016; Jara-Ettinger,
Gweon, Schulz, & Tenenbaum, 2016). Our model adopts this
utility-theoretic approach, and assumes an agent who reasons
about the utility function that represents a weighted combi-
nation of multiple goals (Yoon, Tessler, Goodman, & Frank,
2017) in a social active learning context.1

We instantiate our model in a simple causal learning task
and examine how people choose actions that support learning
vs. performance goals in different social contexts. We present
a toy with an ambiguous causal mechanism (Fig. 1). For this
toy, doing only one of the two possible actions (handle pull or
button press) disambiguates its causal mechanism but poten-
tially risks no immediate effect (neither sound nor light turn-
ing on), while doing both actions simultaneously is immedi-
ately rewarding (music and light on) but is not informative for
learning the toy’s causal mechanism. Thus, the learner can
pick an action that leads to a discovery (exploration; learn-
ing) or an immediate reward (exploitation; performance). The

1Such models are commonly used to approximate group-level
behavior, without the strong assumption that individuals must be
strictly optimal (e.g., Frank, 2013).

Figure 1: An example of the toy used in our paradigm.
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Figure 2: Model schematic for the learner’s inference. The learner considers possible hypotheses: Toy 1 (handle pull turns on
the light, button press turns on music, both actions cause both effects); Toy 2 (handle pull turns on music, button press turns on
the light, both actions cause both effects); and Toy 3 (both actions cause both effects, but each action on its own does not produce
any effect). The learner also considers his goals. When an observer is absent, he considers his learning goal and performance
goal and chooses an action. The learning goal favors a “single” action (e.g., pull the handle only) that can fully disambiguate,
whereas the performance goal favors the “both” action (pull the handle AND push the button) that guarantees the most salient
reward. When an observer is present, the learner considers the learning, performance (not shown), and self-presentation goal.

learner’s decision depends on the relative utilities he assigns
to learning versus performance, which in turn are shaped by
the social context (e.g., the presence or absence of his boss).2

In two experiments, we show that emphasizing perfor-
mance or self-presentation goals leads to actions that are un-
informative and reduces the chances of learning (Exp. 1).
Next, we show that the presence of an observer pushes learn-
ers to consider performance/presentation actions even when a
learning goal is emphasized (Exp. 2). Finally, we show that
the empirical results are consistent with predictions of our
cognitive model of social-active learning.

Computational model
We model a learner L who chooses his action a approximately
optimally (as per optimality parameter λ) with respect to his
goal based on the expected total utility Ut given his action and
presence of an observer o:

PL(a|o) ∝ exp(λ ·E[Ut(a,o)]).

The total utility is defined as:

Ut(a,o)= φlearn ·Ulearn(a)+φper f ·Uper f (a)+δ
o ·φpres ·Upres(a),

where φs are weights that are inferred for each utility from
data and δo is a Dirac delta function that is 1 if there is an
observer, and 0 if there is no observer. Below we describe the
structure of each utility (see Fig. 2 for the model schematic).

2From here on, we use a male pronoun for Bob, the learner, and
female pronoun for Ann, the boss and observer.

Learning utility The learning utility captures the goal to
learn new information, specifically how a given toy works
in our paradigm. The learning utility (Ulearn) in our model
is derived from Optimal Experiment Design models (OED;
Nelson, 2005), which quantify the expected utility of infor-
mation seeking actions. The learner is uncertain about the
mechanism of toy t and wants to decrease his uncertainty by
taking an action. Information gain captures the change in
the learner’s entropy (uncertainty) before and after seeing an
outcome of the action. To maximize information gain, the
learner sums the information gain from each outcome m in
the set of possible outcomes M (e.g., music on), weighted by
the probability of that outcome given the action. Thus,

Ulearn(a) ∝ ∑
m∈M

P(m|a)[H(t)−H(t|m,a)],

where H(t) is the Shannon entropy of the learner’s guess
about the toy (MacKay, 2003). Once the learner chooses an
action and observes an outcome, he updates his beliefs about
each hypothesis via standard Bayesian updating. Finally, we
scale the utility by log2n, where n is the number of possible
actions, to convert the utility to a value between 0 and 1.

Performance utility The performance utility is the util-
ity of achieving an immediate reward outcome. Within our
paradigm, the learner gains utility from an immediate effect
of music or light turning on. The expected performance utility
(Uper f ) before the learner chooses an action is the likelihood
of an effect m given the action a:

Uper f (a) = PL(m|a).
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Presentation utility When there is another person present
to observe the learner’s action, the observer O is expected to
reason about the learner L’s competence, equal to whether
the learner was able to make the toy produce an effect. The
learner thinks about the observer’s inferential process, and the
expected presentation utility (Upres) is based on maximizing
the apparent competence inferred by the observer:

Upres(a) = PO(m|a),

where PO(m|a) is the observer’s own estimate of the likeli-
hood of an effect given the learner’s action.3

Experiment 1
In Exp. 1, we first wanted to confirm that participants would
choose different actions depending on what goal was high-
lighted. We were also interested in how people would act
when no explicit goal was specified within the task. Partic-
ipants were asked to act on a toy with an ambiguous causal
structure, and were assigned to different goal conditions: (1)
Learning (i.e., learn how the toy works), (2) Performance
(e.g., make the toy play music), (3) Presentation (i.e., impress
their boss), and (4) No goal specified. We hypothesized that
participants would choose an informative action more often
in the following order of goal conditions (decreasing): Learn-
ing, No-goal, Performance, and Presentation.4

Method
Participants We recruited 196 participants (45-51 per con-
dition) on Amazon’s Mechanical Turk, with IP addresses in
the US and a task approval rate above 85%. We excluded 7
participants who failed to answer at least two out of three ma-
nipulation check questions correctly (see Procedure section
for details on the manipulation check), and thus the remain-
ing 189 participants were included in our final analysis.

Stimuli and Design We presented instructions for 3
similar-looking toys that work in different ways in a deter-
ministic manner (see captions for Fig. 2). The instructions
conveyed that pressing both the button and pulling the handle
was immediately rewarding but uninformative. In contrast,
either of the single actions was completely disambiguating,
but was uncertain to produce an immediate outcome. The
front of each toy labeled its action(s)–outcome link.

We asked participants to act on one of these toys; impor-
tantly, the given toy was missing its label, leading to uncer-
tainty about its causal structure. We randomly assigned par-
ticipants into four goal conditions. In the No-goal condition
we did not specify any goal for participants. In the Learning,
Performance, and Presentation conditions, we asked partici-
pants to imagine they were toy developers and one day their
boss approached them. We instructed participants to: figure

3We assume that the observer is naive about the toy’s causal
structure; if the observer is knowledgeable, Uper f and Upres will di-
verge, which is an important consideration for future work.

4Our hypothesis, method, model and data analysis were pre-
registered prior to data collection at https://osf.io/kcjau.

out the correct label for the toy (Learning); make the toy play
music (or turn the light on; Performance); or impress their
boss and show that they are competent (Presentation). We
asked participants to select an action out of the following set:
“press the button”, “pull the handle”, or “press the button and
pull the handle.” The order of actions was randomized.

Figure 3: Behavioral results for Exp. 1. A: Proportion of
action decisions for each condition. Error bars are 95% bino-
mial CIs based on a Bayesian beta-binomial model. B: Dis-
tribution of response times on the action decisions. C: Dis-
tribution of participants’ belief change (information gain in
bits) by condition. Higher values represent more information
gained from the action selection.

Procedure In the exposure phase, we showed participants
an example toy and gave instructions for three toy types. We
first presented the instructions for the single action toys (Toy
1 and Toy 2) in a randomized order, and then presented the in-
structions for the both action toy (Toy 3). After instructions,
participants indicated what action would make each toy oper-
ate (e.g., “How would you make [this] toy play music?”) to
show that they understood how the different toys worked.

In the test phase, participants read a scenario for one of
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the four goal conditions, followed by the question: “If you
only had one chance to try a SINGLE action [to pursue the
specified goal], which action would you want to take? You
will get a 10 cent bonus . . . if you [achieve the given goal]”.

Both before and after the critical action decision trial, we
asked participants to rate the likelihood that the unknown toy
was Toy 1, 2, or 3, which indexed participants’ prior beliefs
about how the toys were likely to function and their belief
change after selecting an action and observing its effect.

Results and discussion

Action decisions: We modeled action decisions (informa-
tive “single” vs. rewarding “both” action) using a logistic
regression action ∼ goal condition with the No-goal condi-
tion as the reference category.5 Participants’ tendency to se-
lect a “single” action varied across conditions as predicted
(Fig. 3A), with the highest proportion in the Learning condi-
tion6, followed by No-goal, Performance, and Presentation.

Compared to the No-goal condition, participants selected
the single action at a greater rate in the Learning condition
(β = 1.18, [0.82, 1.55]) and at lower rate in the Presentation
context (β = -1.53, [-2, -1.06]), with the null value of zero
difference condition falling well outside the 95% HDI, and at
similar rate in the Performance condition (β = -0.65, [-1.04,
-0.27]) with the 95% HDI including the null.

Action decision times: As an exploratory measure, we an-
alyzed decision times, or the latency to make an action selec-
tion as measured from the start of the action decision trial (all
RTs were analyzed in log space), using the same model spec-
ification as action decisions. Fig. 3A shows the full RT data
distribution. Compared to the No-goal condition, participants
took longer to generate a decision in the Learning condition.
In contrast, participants in the Performance and Presentation
conditions produced similar decision times. These findings
suggest that reaching a decision in the Learning condition was
cognitively more effortful than the other conditions.

Belief change: We quantified participants’ change in be-
liefs about the toy using information gain. We computed
the Kullback-Leibler (KL) divergence both before and after
participants’ action selections. The KL divergence gives a
measure of the distance between the correct7 probability dis-

5In all analyses, we fit Bayesian regressions to estimate condi-
tion differences. We report uncertainty using 95% Highest Density
Intervals (HDI), which provide a range of plausible condition dif-
ferences. We combined the two single action choices – button press
or handle pull – into one ”single” action in our analysis, as both of
those choices are fully informative and do not differ in their salience
as suggested by judgments in a separate prior elicitation task.

6Note that the proportion of “single” action choices did not ex-
ceed 66.7% in any condition, including the Learning context. This
suggests that “both” action choice might have been especially salient
in our one-shot decision task since participants may have been drawn
to the immediate rewarding effect.

7Note that since the action-effect link was deterministic, the cor-
rect belief distribution is a function of participant’s action decision.
For example, if a participant selected the button action, then Bcorrect
placed 100% of the probability mass on the button hypothesis.

tribution and the participant’s beliefs about the identity of
the unlabeled toy. We notate participants’ belief distribu-
tions as Bprior and Bprior+a and the correct distribution as
Bcorrect . The difference between these KL divergences pro-
vides the number of bits of information gained due to the ac-
tion: IG(a) = DKL(Bcorrect ||Bprior)−DKL(Bcorrect ||Bprior+a).

We modeled information gain as a function of goal
condition and action choices: IG ∼ goal condition +
action response (Fig. 3C). Across all conditions, people who
selected the single action showed a greater gain in bits of in-
formation (βsingle = 0.91, [0.77, 1.05], i.e., learned more from
their action. We did not see evidence of an interaction be-
tween goal and action selection. However, a larger propor-
tion of participants selected a single action in the Learning
context, so learning was more likely in this condition.

Experiment 2
In Exp. 1, we confirmed that participants selected different
actions depending on the type of goal emphasized. In Exp. 2,
our goals were three-fold: (1) to replicate the results from
Exp. 1; (2) to manipulate goals and the presence/absence
of another person (social/no-social) independently, allowing
us to measure the interaction between goals and social con-
text; and (3) to compare empirical data with predictions of
our computational model. Our key behavioral prediction was
an interaction: that participants would be less likely to se-
lect a single (more informative) action in the Learning goal
and No-goal conditions when their boss was present. We also
predicted a null result: that the presence of the boss should
not affect action decisions in the Performance condition.

Method
Participants Using the same recruitment and exclusion cri-
teria as Exp. 1, we recruited 347 participants (42-51 per con-
dition), and included 325 participants in our final analysis.

Stimuli and Design The stimuli and design were identical
to Exp. 1, except we had 7 different goal × social conditions.
Goals were identical to Exp. 1; social context varied depend-
ing on whether the boss was present (Social) or absent (No-
social) in the story. The conditions were: Social-learning,
Social-performance, Social-presentation, No-social-no-goal,
No-social-learning, No-social-performance, and Social-no-
goal. Note that we did not have No-social-presentation con-
dition, because the presentation goal was defined by present-
ing oneself as competent to another person.

Procedure The procedure was identical to Exp. 1.

Results and discussion
Action decisions: We modeled action decisions using a
logistic regression specified as action ∼ goal condition ∗
social context with the No-social-no-goal condition as the
reference category. We replicated the key finding from
Exp. 1: participants selected a “single” action more often in
the Learning goal condition, followed by the No-goal, Per-
formance, and Presentation conditions (Fig. 4A). There was
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a main effect of social context, with participants being less
likely to select the single action when their boss was present
(β= -0.521, [-1.005, -0.053]). Finally, there was evidence for
a reliable interaction between goal condition and social con-
text such that the effect of social context was present in the
Learning and No-goal conditions, but not in the Performance
condition (β per f−social−int = 1.148, [0.049, 2.296]).

Action decision times: We replicated the key decision time
finding from Exp. 1: Participants made slower decisions in
the Learning context than in Performance/Presentation. On
average, participants took 39.32 seconds to make a response
in the No-goal condition and 40.72 sec in the Learning condi-
tion. In contrast, decisions were faster in the Performance (β
= -7.67 sec, [-14.01, -1.25]) and Presentation (-10.66 sec, [-
18.37, -3.36]) conditions, which were similar to one another
(Fig. 4B). There was no evidence of a main effect of social
context or an interaction between goal condition and social
context. Note that here we did not see a difference in decision
times between the Learning and No-goal conditions, which is
different from the pattern in Exp. 1.

Belief change: We replicated the information gain effect
from Exp. 1: Participants who selected a single action showed
greater information gain across all conditions (βsingle = 0.63,
[0.4, 0.86]. There was no evidence of a main effect of social
context or two-/three-way interactions between social con-
text, goal, and action choice. As in Exp. 1, more partici-
pants selected the single action in the Learning condition, es-
pecially in the No-social context, meaning information gain
was most likely in this learning context.

BDA model-data fit: In our paradigm, participants chose
an action based on a certain goal.8 We assumed that the goal
descriptions (e.g., “impress your boss”) conveyed to the par-
ticipants a particular set of goal weights {φlearn, φper f , φpres}
used to generate action choices. We put uninformative priors
on these weights (φ∼Uni f (0,1)) and inferred their credible
values for each social-goal condition, using Bayesian data an-
alytic techniques (Lee & Wagenmakers, 2014).

The inferred goal weights were consistent with our predic-
tions (Fig. 4D). φlearn was highest for the No-social learn-
ing condition, whereas φper f and φpres together made up the
highest portion in the Presentation condition, with high social
pressure to appear competent.

We also inferred another parameter of the cognitive model,
the optimality parameter λ, which represents how optimally
the agent acts with respect to the total utility. We put uninfor-
mative prior on the parameter (λ∼Uni f (0,10)) and inferred
its posterior credible value from the data. We ran 4 MCMC
chains for 100,000 iterations, discarding the first 50,000 for
burnin. The Maximum A- Posteriori estimate and 95% HDI
Interval for λ was 4.79 [3.96, 6.2].

8For action priors, we used a separate task in which people indi-
cated the likelihood for selecting an action without any information
about possible hypotheses or goals. We used the mean likelihood for
each action choice as baseline priors in our model.

Figure 4: Behavioral and model results for Exp. 2. A: Action
decisions from human data (top) and fitted model predictions
(bottom). Color represents social context. B and C: Decision
times and belief change respectively, collapsing across social
contexts. D: Inferred phi values for each condition. All other
plotting conventions are the same as Fig. 3.

The fitted model predictions of action choices are shown
in Fig. 4A (bottom). The model’s expected posteriors over
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action choices capture key differences between conditions:
the single action was more likely for No-social than Social
conditions overall, but not when the performance goal was
highlighted. The model was able to predict the distribution of
action responses with high accuracy r2(21) = 0.9.

General Discussion
How do social contexts shape active learning? We proposed
that people integrate informational and social goals when de-
ciding what to do. In two experiments, we showed that peo-
ple chose more informative actions when learning goals were
highlighted and in the absence of a relevant social context
(no boss present), while they chose more immediately re-
warding actions when performance/presentational goals were
highlighted, especially when a boss was present. When no
goal was specified, people’s behavior seemed to reflect a mix-
ture of goals. Our model of social-active learning success-
fully captured key patterns in people’s action decisions.

This work begins to bring active learning accounts into
contact with social learning theories. We used ideas from Op-
timal Experiment Design, which models active learning as a
process of rational choice to maximize information gain, and
Rational Speech Act models, which formalize recursive so-
cial reasoning within a Bayesian framework. We included so-
cial information within a formal utility-theoretic framework,
building a richer utility function that represented a weighted
combination of informational and social goals.

There are limitations to this research that present oppor-
tunities for future work. First, we did not differentiate be-
tween performance and presentation goals, as the choice of
performing both actions satisfies both of these goals in our
task. Enriching the space of possible actions could tease apart
actions driven by self-presentation, especially when the opti-
mal action for demonstrating one’s competence may be dif-
ferent from the action for immediately rewarding outcomes.
Second, we used a particular social context (the presence
of a boss) to emphasize presentational goals. Our model
can be extended to explain a richer set of social consid-
erations, such as other kinds of observers (e.g., a teacher
who wants the learner to select actions that facilitate learn-
ing). Third, we limited people to a single action choice.
While this allowed for a clean measurement of differences
across conditions, real-world learning often involves sequen-
tial decision-making (e.g., Ho, Littman, MacGlashan, Cush-
man, & Austerweil, 2016) that could cause learners to pri-
oritize different goals depending on their prior actions or the
probability of interacting with an observer in the future.

Another interesting open question is how our model could
be used to understand change in active learning over develop-
ment. Our framework could allow us to measure children’s
developing goal preferences as they gain better social rea-
soning and meta-cognitive abilities. One prediction is that
young children focus on learning goals earlier on when they
are surrounded by familiar caregivers who scaffold learning-
relevant actions. But as their social reasoning abilities ma-

ture and their social environments become more complex,
children may start to emphasize performance or presentation
goals. Overall, this work represents a first step to answering
these rich questions that ultimately seek to unify theories on
active learning and social reasoning.

All experiments, data, model, and analysis codes
are available in the public repository for the project:
https://github.com/kemacdonald/soc-info
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